%I #12 Apr 13 2014 14:08:10
%S 1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,4,1,1,2,1,1,2,1,0,1,2,1,2,2,1,1,1,
%T 4,1,1,1,1,3,2,1,1,1,1,2,2,1,1,1,0,4,1,2,2,0,1,3,2,1,2,1,1,1,1,2,1,1,
%U 4,1,1,2,1,1,1,4,1,1,3,1,2,1,1,3,1,6,1,0
%N a(n) = number of times n occurs in A234741.
%C Number of distinct values k such that A234741(k) = n.
%H Antti Karttunen, <a href="/A236833/b236833.txt">Table of n, a(n) for n = 0..8192</a>
%F a(2n) = a(n).
%F This should also have a direct formula, mirroring the formula for A236853. Cf. also A236861.
%o (Scheme, counting cases empirically with a naive loop. A234742 gives an absolute upper bound for any inverse of A234741):
%o (define (A236833 n) (let ((u (A234742 n))) (let loop ((k n) (ntimes 0)) (cond ((> k u) ntimes) ((= (A234741 k) n) (loop (+ k 1) (+ ntimes 1))) (else (loop (+ k 1) ntimes))))))
%Y A236834 gives the positions of zeros, A236835 the positions of terms larger than one, A236841 the positions of terms other than zero.
%Y Cf. A234741, A236853, A236861.
%K nonn
%O 0,6
%A _Antti Karttunen_, Jan 31 2014