login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043278
Maximal run length in base 4 representation of n.
8
1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 3, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 4, 3, 3, 2, 2, 2
OFFSET
1,5
COMMENTS
Sequences A031942 (or A043090), A037977, A037978, A037979 list numbers for which a(n)=1, a(n)=2, a(n)=3, a(n)=4. - M. F. Hasler, Jul 23 2013
LINKS
MAPLE
mRunLen := proc(L)
if nops(L) = 0 then
0;
else
a := 1 ;
for i from 2 to nops(L) do
if op(i, L) = op(i-1, L) then
a := a+1 ;
else
a := max(a, procname([op(i..nops(L), L)])) ;
break;
end if;
end do:
a ;
end if ;
end proc:
A043278 := proc(n)
convert(n, base, 4) ;
mRunLen(%) ;
end proc: # R. J. Mathar, Jul 26 2015
MATHEMATICA
Table[Max[Length/@Split[IntegerDigits[n, 4]]], {n, 100}] (* Harvey P. Dale, Jan 21 2014 *)
PROG
(PARI) A043278(n, b=4)={my(m, c=1); while(n>0, n%b==(n\=b)%b && c++ && next; m=max(m, c); c=1); m} \\ M. F. Hasler, Jul 23 2013
CROSSREFS
Cf. A043276-A043290 for base-2 to base-16 analogs.
Sequence in context: A236833 A328511 A371245 * A125238 A025896 A050432
KEYWORD
nonn,base
STATUS
approved