login
A025896
Expansion of 1/((1-x^5)*(1-x^11)*(1-x^12)).
9
1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 5, 5, 6, 6, 7, 6, 6
OFFSET
0,23
COMMENTS
a(n) is the number of partitions of n into parts 5, 11, and 12. - Joerg Arndt, Jan 17 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,0,0,0,1,1,0,0,0,-1,-1,0,0,0,0,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)*(1-x^11)*(1-x^12)), {x, 0, 120}], x] (* G. C. Greubel, Jan 17 2024 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 120); Coefficients(R!( 1/((1-x^5)*(1-x^11)*(1-x^12)) )); // G. C. Greubel, Jan 17 2024
(SageMath)
def A025896_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^11)*(1-x^12)) ).list()
A025896_list(120) # G. C. Greubel, Jan 17 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved