login
A025893
Expansion of 1/((1-x^5)*(1-x^9)*(1-x^12)).
5
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 5, 4, 4, 5, 4, 5, 6, 4, 5, 6, 5, 6, 6, 5, 6, 7, 6, 6, 8, 6, 7, 8, 6, 8, 8, 7
OFFSET
0,25
COMMENTS
a(n) is the number of partitions of n into parts 5, 9, and 12. - Joerg Arndt, Jan 17 2024
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,0,1,0,0,1,0,-1,0,0,-1,0,0,0,-1,0,0,0,0,1).
MATHEMATICA
CoefficientList[Series[1/((1-x^5)(1-x^9)(1-x^12)), {x, 0, 80}], x] (* Harvey P. Dale, Jan 09 2017 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 100); Coefficients(R!( 1/((1-x^5)*(1-x^9)*(1-x^12)) )); // G. C. Greubel, Jan 16 2024
(Sage)
def A025893_list(prec):
P.<x> = PowerSeriesRing(QQ, prec)
return P( 1/((1-x^5)*(1-x^9)*(1-x^12)) ).list()
A025893_list(100) # G. C. Greubel, Jan 16 2024
CROSSREFS
KEYWORD
nonn
STATUS
approved