|
|
A025891
|
|
Expansion of 1/((1-x^5)*(1-x^9)*(1-x^10)).
|
|
3
|
|
|
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 1, 2, 0, 0, 1, 2, 3, 0, 0, 1, 2, 3, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 2, 3, 4, 5, 7, 2, 3, 4, 6, 8, 3, 4, 5, 7, 9, 3, 4, 6, 8, 10, 4, 5, 7, 9, 11, 4, 6, 8, 10, 12, 5, 7, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,11
|
|
COMMENTS
|
a(n) is the number of partitions of n into parts 5, 9, and 10. - Michel Marcus, Dec 12 2022
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,1,0,0,0,1,1,0,0,0,-1,-1,0,0,0,-1,0,0,0,0,1).
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-x^5)(1-x^9)(1-x^10)), {x, 0, 80}], x] (* Harvey P. Dale, Mar 05 2019 *)
|
|
PROG
|
(Magma) R<x>:=PowerSeriesRing(Integers(), 90); Coefficients(R!( 1/((1-x^5)*(1-x^9)*(1-x^10)) )); // G. C. Greubel, Dec 11 2022
(SageMath)
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 1/((1-x^5)*(1-x^9)*(1-x^10)) ).list()
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|