|
|
A120630
|
|
Dirichlet inverse of A002654.
|
|
2
|
|
|
1, -1, 0, 0, -2, 0, 0, 0, -1, 2, 0, 0, -2, 0, 0, 0, -2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, -1, -1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, -2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, -2, -2, 0, 0, 0, 0, 0, 0, -2, 1, 0, 0, -2, 0, 0, 0, 0, 2, 0, 0, -2, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative function with a(p^e)=0 if e>2. a(2)=-1, a(4)=0. If p is a prime congruent to 3 modulo 4, then a(p)=0 and a(p^2)=-1. If p is a prime congruent to 1 modulo 4, then a(p)=-2 and a(p^2)=1.
Sum_{k=1..n} abs(a(k)) ~ c * n, where c = 3/(2*Pi*G) = 0.521269..., and G is Catalan's constant (A006752). - Amiram Eldar, Jan 22 2024
|
|
EXAMPLE
|
a(65)=4 because 65 is 5 times 13 and both of those primes are congruent to 1 modulo 4. Doubling an odd index yields the opposite of the value (e.g., a(130)=-4) because a(2)=-1. Doubling an even index yields zero.
|
|
MAPLE
|
local a, pp;
if n = 1 then
1;
else
a := 1 ;
for pp in ifactors(n)[2] do
if op(2, pp) > 2 then
a := 0;
elif op(1, pp) = 2 then
if op(2, pp) = 1 then
a := -a ;
else
a := 0 ;
end if;
elif modp(op(1, pp), 4) = 3 then
if op(2, pp) = 1 then
a := 0 ;
else
a := -a ;
end if;
else
if op(2, pp) = 1 then
a := -2*a ;
else
;
end if;
end if;
end do:
a;
end if;
|
|
MATHEMATICA
|
A120630[n_] := Module[{a, pp}, If[n == 1, 1, a = 1; Do[Which[pp[[2]] > 2, a = 0, pp[[1]] == 2, If[pp[[2]] == 1, a = -a, a = 0], Mod[pp[[1]], 4] == 3, If[pp[[2]] == 1, a = 0, a = -a], True, If[pp[[2]] == 1, a = -2*a]], {pp, FactorInteger[n]}]; a]]; Array[A120630, 120] (* Jean-François Alcover, Apr 24 2017, after R. J. Mathar *)
|
|
PROG
|
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, sumdiv( n, d, (d%4==1) - (d%4==3))))} \\ Andrew Howroyd, Aug 05 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
mult,easy,sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|