OFFSET
1,2
COMMENTS
sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: 1/(zeta(x)*zeta(x-4)).
Multiplicative with a(p^1) = -1 - p^4, a(p^2) = p^4, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^4. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d^2 * (sigma_2(d))^(-1) * J_2(n/d),
a(n) = Sum_{d divides n} d^3 * (sigma_1(d))^(-1) * J_3(n/d), and for k >= 0,
a(n) = Sum_{d divides n} d^4 * (sigma_k(d))^(-1) * J_(k+4)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[n/#]*MoebiusMu[#]*#^4 &], {n, 1, 50}] (* G. C. Greubel, Nov 07 2018 *)
f[p_, e_] := If[e == 1, -p^4 - 1, If[e == 2, p^4, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^4); \\ Michel Marcus, Nov 06 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^4*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020
CROSSREFS
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Apr 08 2000
STATUS
approved