login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053826
Dirichlet inverse of sigma_4 function (A001159).
9
1, -17, -82, 16, -626, 1394, -2402, 0, 81, 10642, -14642, -1312, -28562, 40834, 51332, 0, -83522, -1377, -130322, -10016, 196964, 248914, -279842, 0, 625, 485554, 0, -38432, -707282, -872644, -923522, 0, 1200644, 1419874, 1503652, 1296, -1874162
OFFSET
1,2
COMMENTS
sigma_4(n) is the sum of the 4th powers of the divisors of n (A001159).
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 39.
LINKS
FORMULA
Dirichlet g.f.: 1/(zeta(x)*zeta(x-4)).
Multiplicative with a(p^1) = -1 - p^4, a(p^2) = p^4, a(p^e) = 0 for e>=3. - Mitch Harris, Jun 27 2005
a(n) = Sum_{d|n} mu(n/d)*mu(d)*d^4. - Ilya Gutkovskiy, Nov 06 2018
From Peter Bala, Jan 17 2024: (Start)
a(n) = Sum_{d divides n} d * A053825(d) * phi(n/d), where the totient function phi(n) = A000010(n).
a(n) = Sum_{d divides n} d^2 * (sigma_2(d))^(-1) * J_2(n/d),
a(n) = Sum_{d divides n} d^3 * (sigma_1(d))^(-1) * J_3(n/d), and for k >= 0,
a(n) = Sum_{d divides n} d^4 * (sigma_k(d))^(-1) * J_(k+4)(n/d), where (sigma_k(n))^(-1) denotes the Dirichlet inverse of the divisor sum function sigma_k(n) and J_k(n) denotes the Jordan totient function. (End)
MATHEMATICA
Table[DivisorSum[n, MoebiusMu[n/#]*MoebiusMu[#]*#^4 &], {n, 1, 50}] (* G. C. Greubel, Nov 07 2018 *)
f[p_, e_] := If[e == 1, -p^4 - 1, If[e == 2, p^4, 0]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*moebius(d)*d^4); \\ Michel Marcus, Nov 06 2018
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 - X)*(1 - p^4*X))[n], ", ")) \\ Vaclav Kotesovec, Sep 16 2020
CROSSREFS
Dirichlet inverse of sigma_k(n): A007427 (k = 0), A046692 (k = 1), A053822(k = 2), A053825 (k = 3), A178448 (k = 5).
Cf. A001159, A046099 (where a(n) = 0).
Sequence in context: A347501 A197397 A354012 * A351267 A184982 A088687
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Apr 08 2000
STATUS
approved