login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A351267
Sum of the 4th powers of the squarefree divisors of n.
11
1, 17, 82, 17, 626, 1394, 2402, 17, 82, 10642, 14642, 1394, 28562, 40834, 51332, 17, 83522, 1394, 130322, 10642, 196964, 248914, 279842, 1394, 626, 485554, 82, 40834, 707282, 872644, 923522, 17, 1200644, 1419874, 1503652, 1394, 1874162, 2215474, 2342084, 10642, 2825762, 3348388
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^4 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^4 * mu(d)^2.
G.f.: Sum_{k>=1} mu(k)^2 * k^4 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^4. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 17; a(4) = Sum_{d|4} d^4 * mu(d)^2 = 1^4*1 + 2^4*1 + 4^4*0 = 17.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^4); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^4)); \\ Michel Marcus, Feb 06 2022
CROSSREFS
Cf. A008683 (mu), A013661, A013663.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), this sequence (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A197397 A354012 A053826 * A184982 A088687 A321560
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved