login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351265
Sum of the squares of the squarefree divisors of n.
14
1, 5, 10, 5, 26, 50, 50, 5, 10, 130, 122, 50, 170, 250, 260, 5, 290, 50, 362, 130, 500, 610, 530, 50, 26, 850, 10, 250, 842, 1300, 962, 5, 1220, 1450, 1300, 50, 1370, 1810, 1700, 130, 1682, 2500, 1850, 610, 260, 2650, 2210, 50, 50, 130, 2900, 850, 2810, 50, 3172, 250, 3620
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^2 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^2 * mu(d)^2.
a(n) = abs(A328639(n)).
G.f.: Sum_{k>=1} mu(k)^2 * k^2 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Multiplicative with a(p^e) = 1 + p^2. - Amiram Eldar, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(3)/(3*zeta(2)) = A253905 / 3 = 0.243587... . - Amiram Eldar, Nov 10 2022
Dirichlet g.f.: zeta(s)*zeta(s-2)/zeta(2s-4). - Michael Shamos, Aug 05 2023
EXAMPLE
a(6) = 50; a(6) = Sum_{d|6} d^2 * mu(d)^2 = 1^2*1 + 2^2*1 + 3^2*1 + 6^2*1 = 50.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^2); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
PROG
(PARI) a(n) = sumdiv(n, d, if (issquarefree(d), d^2)); \\ Michel Marcus, Feb 06 2022
CROSSREFS
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), this sequence (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A205854 A005093 A328639 * A369718 A365479 A374537
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved