login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351262
a(n) = n^10 * Sum_{p|n, p prime} 1/p^10.
11
0, 1, 1, 1024, 1, 60073, 1, 1048576, 59049, 9766649, 1, 61514752, 1, 282476273, 9824674, 1073741824, 1, 3547250577, 1, 10001048576, 282534298, 25937425625, 1, 62991106048, 9765625, 137858492873, 3486784401, 289255703552, 1, 586710856801, 1, 1099511627776, 25937483650
OFFSET
1,4
LINKS
FORMULA
a(A000040(n)) = 1.
EXAMPLE
a(6) = 60073; a(6) = 6^10 * Sum_{p|6, p prime} 1/p^10 = 60466176 * (1/2^10 + 1/3^10) = 60073.
MAPLE
f:= proc(n) local p;
n^10 * add(1/p^10, p = numtheory:-factorset(n))
end proc:
map(f, [$1..40]); # Robert Israel, Sep 10 2024
MATHEMATICA
Join[{0}, Table[n^10 Total[1/FactorInteger[n][[;; , 1]]^10], {n, 2, 40}]] (* Harvey P. Dale, Aug 10 2024 *)
PROG
(Python)
from sympy import primefactors
def A351262(n): return sum((n//p)**10 for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
(PARI) a(n) = my(f=factor(n)); n^10*sum(k=1, #f~, 1/f[k, 1]^10); \\ Michel Marcus, Sep 10 2024
CROSSREFS
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), this sequence (k=10).
Cf. A000040.
Sequence in context: A336779 A030001 A176764 * A336778 A084912 A336780
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved