OFFSET
1,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - Michael Shamos, Mar 01 2023
Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - Vaclav Kotesovec, Mar 03 2023
EXAMPLE
a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved