login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351242
a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.
11
0, 1, 1, 8, 1, 35, 1, 64, 27, 133, 1, 280, 1, 351, 152, 512, 1, 945, 1, 1064, 370, 1339, 1, 2240, 125, 2205, 729, 2808, 1, 4591, 1, 4096, 1358, 4921, 468, 7560, 1, 6867, 2224, 8512, 1, 12221, 1, 10712, 4104, 12175, 1, 17920, 343, 16625, 4940, 17640, 1, 25515, 1456, 22464
OFFSET
1,4
LINKS
FORMULA
a(A000040(n)) = 1.
G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - Ilya Gutkovskiy, Feb 05 2022
Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - Michael Shamos, Mar 01 2023
Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - Vaclav Kotesovec, Mar 03 2023
EXAMPLE
a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.
CROSSREFS
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), this sequence (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).
Sequence in context: A343257 A224997 A275790 * A050302 A341739 A286919
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved