OFFSET
1,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000
FORMULA
a(A000040(n)) = 1.
Dirichlet g.f.: zeta(s-5)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^5/n^s) Sum_{p|n} 1/p^5. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^5*(p*j)^(s-5)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-5) = zeta(s-5)*primezeta(s). The result generalizes to higher powers of p. - Michael Shamos, Mar 03 2023
Sum_{k=1..n} a(k) ~ A085966 * n^6/6. - Vaclav Kotesovec, Mar 03 2023
EXAMPLE
a(6) = 275; a(6) = 6^5 * Sum_{p|6, p prime} 1/p^5 = 7776 * (1/2^5 + 1/3^5) = 275.
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved