login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069359
a(n) = n * Sum_{p|n} 1/p where p are primes dividing n.
59
0, 1, 1, 2, 1, 5, 1, 4, 3, 7, 1, 10, 1, 9, 8, 8, 1, 15, 1, 14, 10, 13, 1, 20, 5, 15, 9, 18, 1, 31, 1, 16, 14, 19, 12, 30, 1, 21, 16, 28, 1, 41, 1, 26, 24, 25, 1, 40, 7, 35, 20, 30, 1, 45, 16, 36, 22, 31, 1, 62, 1, 33, 30, 32, 18, 61, 1, 38, 26, 59, 1, 60, 1, 39, 40, 42, 18, 71, 1, 56
OFFSET
1,4
COMMENTS
Coincides with arithmetic derivative on squarefree numbers: a(A005117(n)) = A068328(n) = A003415(A005117(n)). - Reinhard Zumkeller, Jul 20 2003, Clarified by Antti Karttunen, Nov 15 2019
a(n) = n-1 iff n = 1 or n is a primary pseudoperfect number A054377. - Jonathan Sondow, Apr 16 2014
a(1) = 0 by the standard convention for empty sums.
“Seva” on the MathOverflow link asks if the iterates of this sequence are all eventually 0. - Charles R Greathouse IV, Feb 15 2019
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..16384 (first 10000 terms from Franklin T. Adams-Watters)
FORMULA
G.f.: Sum(x^p(j)/(1-x^p(j))^2,j>=1), where p(j) is the j-th prime. - Vladeta Jovovic, Mar 29 2006
a(n) = A230593(n) - n. a(n) = A010051(n) (*) A000027(n), where operation (*) denotes Dirichlet convolution, that is, convolution of type: a(n) = Sum_(d|n) b(d) * c(n/d) = Sum_(d|n) A010051(d) * A000027(n/d). - Jaroslav Krizek, Nov 07 2013
a(A054377(n)) = A054377(n) - 1. - Jonathan Sondow, Apr 16 2014
Dirichlet g.f.: zeta(s - 1)*primezeta(s). - Geoffrey Critzer, Mar 17 2015
Sum_{k=1..n} a(k) ~ A085548 * n^2 / 2. - Vaclav Kotesovec, Feb 04 2019
From Antti Karttunen, Nov 15 2019: (Start)
a(n) = Sum_{d|n} A008683(n/d)*A323599(d).
a(n) = A003415(n) - A329039(n) = A230593(n) - n = A306369(n) - A000010(n).
a(n) = A276085(A329350(n)) = A048675(A329352(n)).
a(A276086(n)) = A329029(n), a(A328571(n)) = A329031(n).
(End)
a(n) = Sum_{d|n} A000010(d) * A001221(n/d). - Torlach Rush, Jan 21 2020
a(n) = Sum_{k=1..n} omega(gcd(n, k)). - Ilya Gutkovskiy, Feb 21 2020
EXAMPLE
a(12) = 10 because the prime divisors of 12 are 2 and 3 so we have: 12/2 + 12/3 = 6 + 4 = 10. - Geoffrey Critzer, Mar 17 2015
MAPLE
A069359 := n -> add(n/d, d = select(isprime, numtheory[divisors](n))):
seq(A069359(i), i = 1..20); # Peter Luschny, Jan 31 2012
# second Maple program:
a:= n-> n*add(1/i[1], i=ifactors(n)[2]):
seq(a(n), n=1..100); # Alois P. Heinz, Oct 23 2019
MATHEMATICA
f[list_, i_] := list[[i]]; nn = 100; a = Table[n, {n, 1, nn}]; b =
Table[If[PrimeQ[n], 1, 0], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Mar 17 2015 *)
PROG
(Sage)
def A069359(n) :
D = filter(is_prime, divisors(n))
return add(n/d for d in D)
print([A069359(i) for i in (1..20)]) # Peter Luschny, Jan 31 2012
(PARI) a(n) = n*sumdiv(n, d, isprime(d)/d); \\ Michel Marcus, Mar 18 2015
(PARI) a(n) = my(ps=factor(n)[, 1]~); sum(k=1, #ps, n\ps[k]) \\ Franklin T. Adams-Watters, Apr 09 2015
(Magma) [0] cat [n*&+[1/p: p in PrimeDivisors(n)]:n in [2..80]]; // Marius A. Burtea, Jan 21 2020
(Python)
from sympy import primefactors
def A069359(n): return sum(n//p for p in primefactors(n)) # Chai Wah Wu, Feb 05 2022
CROSSREFS
Cf. A322068 (partial sums), A323599 (Inverse Möbius transform).
Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), this sequence (k=1), A322078 (k=2), A351242 (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).
Sequence in context: A249274 A205443 A340070 * A318320 A369741 A014652
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Apr 15 2002
STATUS
approved