The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A069360 Number of prime pairs (p,q), p <= q, such that (p+q)/2 = 2*n. 7
 1, 1, 1, 2, 2, 3, 2, 2, 4, 3, 3, 5, 3, 3, 6, 5, 2, 6, 5, 4, 8, 4, 4, 7, 6, 5, 8, 7, 6, 12, 5, 3, 9, 5, 7, 11, 5, 4, 11, 8, 5, 13, 6, 7, 14, 8, 5, 11, 9, 8, 14, 7, 6, 13, 9, 7, 12, 7, 9, 18, 9, 6, 16, 8, 10, 16, 9, 7, 16, 14, 8, 17, 8, 8, 21, 10, 8, 17, 10, 11 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS The Goldbach conjecture, if true, would imply a(n) > 0. Row lengths of table A260689, n > 1. - Reinhard Zumkeller, Nov 17 2015 LINKS Klaus Brockhaus, Table of n, a(n) for n = 1..10000 FORMULA For n > 1: a(n) = #{k | 2*n-k and 2*n+k are prime, 1<=k<=2*n}. a(n) = Sum_{i=3..2n} isprime(i) * isprime(4n-i) * (sign(4n-i) mod 4), n > 1. - Wesley Ivan Hurt, Dec 18 2016 EXAMPLE n=8: there are 16 pairs (i,j) with (i+j)/2=n*2=16; only two of them, (3,29) and (13,19), consist of primes, therefore a(8)=2. MATHEMATICA Table[Length[Select[Range[0, 2*n], PrimeQ[2n-#] && PrimeQ[2n+#] &]], {n, 50}] (* Stefan Steinerberger, Nov 30 2007 *) Table[Boole[n == 1] + Sum[Boole[PrimeQ@ i] Boole[PrimeQ[4 n - i]] Mod[Sign[4 n - i], 4], {i, 3, 2 n}], {n, 80}] (* Michael De Vlieger, Dec 21 2016 *) Table[Count[IntegerPartitions[4n, {2}], _?(AllTrue[#, PrimeQ]&)], {n, 80}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2018 *) PROG (Haskell) a069360 n = sum [a010051' (4*n-p) | p <- takeWhile (<= 2*n) a000040_list] -- Reinhard Zumkeller, May 08 2014, Apr 09 2012 (PARI) a(n)=my(s); forprime(p=2, 2*n, s+=isprime(4*n-p)); s \\ Charles R Greathouse IV, Apr 09 2012 CROSSREFS Bisection of A002375. Cf. A082467 (least k such that n-k and n+k are both primes), A134677 (records), A134678 (where records occur), A135146 (index of first occurrence of n). Cf. A000040, A010051, A260689. Sequence in context: A230296 A278317 A086454 * A175509 A213023 A068050 Adjacent sequences:  A069357 A069358 A069359 * A069361 A069362 A069363 KEYWORD nonn,easy,nice AUTHOR Reinhard Zumkeller, Apr 15 2002 EXTENSIONS Edited by Klaus Brockhaus, Nov 20 2007 a(1)=1, thanks to Charles R Greathouse IV, who noticed this; b-file adjusted. STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 11 08:10 EDT 2020. Contains 335626 sequences. (Running on oeis4.)