login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.
11

%I #26 Mar 09 2023 20:52:40

%S 0,1,1,8,1,35,1,64,27,133,1,280,1,351,152,512,1,945,1,1064,370,1339,1,

%T 2240,125,2205,729,2808,1,4591,1,4096,1358,4921,468,7560,1,6867,2224,

%U 8512,1,12221,1,10712,4104,12175,1,17920,343,16625,4940,17640,1,25515,1456,22464

%N a(n) = n^3 * Sum_{p|n, p prime} 1/p^3.

%H Seiichi Manyama, <a href="/A351242/b351242.txt">Table of n, a(n) for n = 1..10000</a>

%F a(A000040(n)) = 1.

%F G.f.: Sum_{k>=1} x^prime(k) * (1 + 4*x^prime(k) + x^(2*prime(k))) / (1 - x^prime(k))^4. - _Ilya Gutkovskiy_, Feb 05 2022

%F Dirichlet g.f. = zeta(s-3)*primezeta(s). This follows because Sum_{n>=1} a(n)/n^s = Sum_{n>=1} (n^3/n^s) Sum_{p|n} 1/p^3. Since n = p*j, rewrite the sum as Sum_{p} Sum_{j>=1} 1/(p^3*(p*j)^(s-3)) = Sum_{p} 1/p^s Sum_{j>=1} 1/j^(s-3) = zeta(s-3)*primezeta(s). The result generalizes to higher powers of p in a(n). - _Michael Shamos_, Mar 01 2023

%F Sum_{k=1..n} a(k) ~ A085964 * n^4/4. - _Vaclav Kotesovec_, Mar 03 2023

%e a(6) = 35; a(6) = 6^3 * Sum_{p|6, p prime} 1/p^3 = 216 * (1/2^3 + 1/3^3) = 35.

%Y Sequences of the form n^k * Sum_{p|n, p prime} 1/p^k for k = 0..10: A001221 (k=0), A069359 (k=1), A322078 (k=2), this sequence (k=3), A351244 (k=4), A351245 (k=5), A351246 (k=6), A351247 (k=7), A351248 (k=8), A351249 (k=9), A351262 (k=10).

%Y Cf. A000040, A085964.

%K nonn

%O 1,4

%A _Wesley Ivan Hurt_, Feb 05 2022