OFFSET
1,2
COMMENTS
For the initial 105367 19-smooth terms of A351255, the last 7 occurs here at a(54796), with A351255(54796) = 289993286583 = 3^2 * 7 * 11 * 13^2 * 19^5, and the last 5 occurs here at a(65777), with A351255(65777) = 391899820830375516750 = 2 * 3^2 * 5^3 * 7^3 * 13^3 * 17^3 * 19^6, already a moderately high starting value, in whose vicinity most ending primes for successful iterations are much larger. This observation motivates a conjecture: Even from large numbers with high exponents in their prime factorization it is sometimes possible to reach a small prime. Compare to the conjecture 8 in Ufnarovski & Åhlander paper.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..12878 (computed for all 17-smooth terms of A351255)
Antti Karttunen, 105368 initial terms, without indices (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)
Victor Ufnarovski and Bo Åhlander, How to Differentiate a Number, J. Integer Seqs., Vol. 6, 2003, #03.3.4.
FORMULA
EXAMPLE
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
A351078(n) = { while(n>1&&!isprime(n), n = A003415checked(n)); (n); };
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Feb 11 2022
STATUS
approved