login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A351258
a(n) = A099307(A351255(n)) - A051903(A351255(n)).
5
1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 3, 3, 2, 2, 1, 4, 3, 2, 2, 2, 2, 2, 3, 2, 2, 4, 9, 4, 5, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 2, 2, 9, 2, 2, 2, 5, 6, 2, 2, 2, 3, 2, 2, 2, 2, 6, 2, 6, 1, 2, 5, 2, 2, 2, 2, 3, 2, 2, 2, 5, 2, 2, 2, 8, 5, 2, 2, 6, 2, 2, 9, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 3, 7, 3, 3, 3, 4, 2, 2, 3, 2, 8
OFFSET
1,4
COMMENTS
All terms are > 0 because from any k > 0, one certainly cannot reach 1 in less than A051903(k) iterations of the map x -> A003415(x).
One of the records occur at a(20457) = 38. The corresponding term of A351255 is A351255(20457) = A276086(A328116(20457)) = A276086(688352) = 442600020398400142264711707660915237 = 3 * 7^6 * 11^10 * 13^11 * 17^5 * 19. When starting iterating from this value with A003415, it first goes relatively smoothly in 11 steps to the first squarefree number encountered, 6201461846617177861789236821121654153, but after that, it still meanders for the additional 37 iterations (visiting mostly squarefree numbers, but also six numbers with max. exponent = 2, and one number with max. exponent = 3), before finally reaching zero.
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..105368 (computed for all 19-smooth terms of A351255, and also for A276086(9699690) = 23)
FORMULA
a(n) = A351257(n) - A351256(n) = A099307(A351255(n)) - A051903(A351255(n)).
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A051903(n) = if((1==n), 0, vecmax(factor(n)[, 2]));
A099307(n) = { my(s=1); while(n>1, n = A003415checked(n); s++); if(n, s, 0); };
A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
for(n=0, 2^9, u=A276086(n); c = A099307(u); if(c>0, print1(c-A051903(u), ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 11 2022
STATUS
approved