login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097028
Function f(x) = EulerPhi(x) + floor(x/2) is iterated; a(n) is the length of transient part and terminal cycle if the iteration was initiated at n. So a(n) is the number of distinct terms arising during iteration.
6
1, 1, 1, 1, 2, 2, 3, 1, 2, 2, 2, 3, 3, 4, 1, 1, 5, 2, 5, 3, 2, 2, 4, 4, 2, 3, 4, 4, 6, 4, 3, 1, 4, 5, 5, 4, 4, 5, 23, 5, 4, 5, 22, 6, 2, 2, 24, 6, 25, 3, 3, 4, 23, 3, 21, 5, 2, 3, 21, 3, 25, 26, 21, 1, 6, 24, 20, 25, 23, 22, 27, 4, 26, 27, 36, 28, 35, 22, 33, 5, 30, 31, 20, 25, 28, 29, 20, 26, 29
OFFSET
1,5
COMMENTS
Observation (see also Labos Elemer's comment at A097026): most n < 1000 have 1 <= a(n) <= 108; the following have a(n) > 1000 if finite: {163, 182, 196, 243, 283, 331, 423, 487, 495, 503, 511, 523, 533, 551, 559, 571, 583, 591, 593, 606, 611, 623, 642, 646, 651, 679, 685, 687, 725, 726, 729, 731, 732, 745, 746, 753, 755, 757, 758, 767, 779, 781, 783, 791, 799, 809, 811, 814, 839, 850, 855, 857, 859, 867, 869, 871, 875, 876, 885, 886, 888, 891, 895, 906, 908, 911, 913, 914, 915, 916, 921, 922, 923, 931, 937, 942, 959, 962, 964, 970, 971, 977, 985, 991}. - Michael De Vlieger, Feb 27 2017
FORMULA
a(n) = A097026(n) + A097027(n) = c(n) + t(n).
EXAMPLE
For n=70, iteration list = {70, 59, 87, 99, 109, 162, 135, 139, 207, 235, 301, 402, 333, 382, 381, 442, [413, 554, 553, 744, 612, 498], 413}, a(70) = 22.
n=2^j: a(2^j)=1, powers of 2 are fixed points, free of transients, so t + c = 0 + 1 = 1.
MATHEMATICA
Table[Length@ Union@ NestList[EulerPhi@ # + Floor[#/2] &, n, 10^3], {n, 10^3}] (* Michael De Vlieger, Feb 27 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 27 2004
STATUS
approved