login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263721
The prime p in the Fouvry-Iwaniec prime k^2 + p^2 (A185086), or the larger of k and p if both are prime.
3
2, 3, 5, 5, 7, 5, 3, 5, 3, 7, 11, 7, 11, 13, 7, 2, 13, 13, 5, 17, 13, 11, 5, 17, 7, 17, 19, 3, 17, 7, 19, 5, 11, 19, 13, 23, 5, 17, 19, 13, 23, 5, 2, 19, 17, 11, 5, 23, 29, 29, 23, 19, 29, 13, 31, 31, 23, 11, 3, 5, 31, 13, 2, 29, 5, 13, 31, 2, 11, 5, 31, 37, 23, 37, 3, 7, 23, 3, 13, 31, 19, 37, 41, 11
OFFSET
1,1
COMMENTS
The sequence is well-defined by the uniqueness part of Fermat's two-squares theorem.
The sequence is infinite, since Fouvry and Iwaniec proved that A185086 is infinite.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica 79:3 (1997), pp. 249-287.
FORMULA
a(n)^2 = A185086(n) - k^2 for some integer k > 0.
EXAMPLE
A185086(2) = 13 = 2^2 + 3^2 and A185086(6) = 61 = 5^2 + 6^2, so a(2) = 3 and a(6) = 5.
MATHEMATICA
p = 2; lst = {}; While[p < 100, k = 1; While[k < 101, If[PrimeQ[k^2 + p^2], AppendTo[lst, {k^2 + p^2, If[PrimeQ@ k, Max[k, p], p]}]]; k++]; p = NextPrime@ p]; Transpose[Union@ lst][[2]]
PROG
(PARI) do(lim)=my(v=List(), p2, t); forprime(p=2, sqrtint(lim\=1), p2=p^2; for(k=1, sqrtint(lim-p2), if(isprime(t=p2+k^2), listput(v, [t, if(isprime(k), max(k, p), p)])))); v=vecsort(Set(v), 1); apply(u->u[2], v) \\ Charles R Greathouse IV, Aug 21 2017
KEYWORD
nonn
AUTHOR
STATUS
approved