login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263724
Least prime p = prime(n)^2 + prime(n+1)^2 + prime(n+2)^2 + prime(n+3)^2 + q^2, where q > prime(n+3) is also prime.
1
373, 653, 1997, 1901, 2309, 3389, 4373, 5381, 6701, 8069, 10589, 12269, 18269, 18461, 19541, 22973, 24821, 29021, 32909, 38261, 46589, 45869, 50021, 53549, 56909, 66029, 69389, 77261, 87629, 93581, 102101, 107741, 118901, 128981, 131837, 145517, 152909, 159869, 170021, 188261, 184901, 196661, 214469, 229781, 237821, 252509, 277157, 281429, 291101, 305933, 317693, 333029, 344021, 359981, 370661, 387341, 395069, 418349, 460949
OFFSET
2,1
COMMENTS
The corresponding prime q is in A263725.
The prime p exists for all n > 1 under Schinzel's Hypothesis H; see Sierpinski (1988), p. 221.
If q = prime(n+4), then p is in A133559 (prime sums of squares of 5 consecutive primes). The converse holds if a(n) != a(m) when n != m (which holds if a(n) < a(n+1), as appears to be true).
REFERENCES
W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see p. 221.
EXAMPLE
The primes 373 = 3^2 + 5^2 + 7^2 + 11^2 + 13^2, 653 = 5^2 + 7^2 + 11^2 + 13^2 + 17^2, and 1997 = 7^2 + 11^2 + 13^2 + 17^2 + 37^2 lead to a(1) = 373, a(2) = 653, and a(3) = 1997.
MATHEMATICA
Table[k = 4;
While[p = Sum[Prime[n + j]^2, {j, 0, 3}] + Prime[n + k]^2; ! PrimeQ[p],
k++]; p, {n, 2, 60}]
CROSSREFS
Sequence in context: A142395 A182573 A142921 * A133559 A229499 A023313
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 24 2015
STATUS
approved