The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263723 Number of representations of the prime P = A182479(n) as P = p^2 + q^2 + r^2, where p < q < r are also primes. 1
 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 1, 4, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS According to Sierpinski and Schinzel (1988), it is easy to prove that the smallest of p, q, r is always p = 3, and under Schinzel's hypothesis H the sequence is infinite. REFERENCES W. Sierpinski, Elementary Theory of Numbers, 2nd English edition, revised and enlarged by A. Schinzel, Elsevier, 1988; see pp. 220-221. LINKS Wikipedia, Schinzel's Hypothesis H EXAMPLE A182479(1) = 83 = 3^2 + 5^2 + 7^2 and A182479(2) = 179 = 3^2 + 7^2 + 11^2 are the only ways to write 83 and 179 as sums of squares of 3 distinct primes, so a(1) = 1 and a(2) = 1. A182479(5) = 419 = 3^2 + 7^2 + 19^2 = 3^2 + 11^2 + 17^2 are the only such representations of 419, so a(5) = 2. MATHEMATICA lst = {}; r = 7; While[r < 132, q = 5; While[q < r, P = 9 + q^2 + r^2; If[PrimeQ@P, AppendTo[lst, P]];   q = NextPrime@q]; r = NextPrime@r]; Take[Transpose[Tally@Sort@lst][[2]], 105] CROSSREFS Cf. A085317, A125516, A182479. Sequence in context: A327804 A056624 A193348 * A318498 A093997 A157196 Adjacent sequences:  A263720 A263721 A263722 * A263724 A263725 A263726 KEYWORD nonn AUTHOR Jonathan Sondow and Robert G. Wilson v, Oct 24 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 19:36 EDT 2021. Contains 347608 sequences. (Running on oeis4.)