login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182479
Primes of the form p^2 + q^2 + r^2, where p,q,r are distinct primes.
4
83, 179, 227, 347, 419, 467, 491, 563, 587, 659, 827, 971, 1019, 1091, 1259, 1427, 1499, 1667, 1811, 1907, 1979, 2027, 2243, 2267, 2339, 2531, 2579, 2699, 2819, 2843, 2939, 3347, 3539, 3659, 3779, 3851, 4019, 4091, 4259, 4451, 4523, 4547, 4691, 4787, 5099
OFFSET
1,1
COMMENTS
All terms are congruent to 5 modulo 6. Smallest of primes p, q, r is always 3. - Zak Seidov, Jun 03 2014
The number of such representations of a prime of that form is A263723. - Jonathan Sondow and Robert G. Wilson v, Nov 02 2015
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
5099 = 3^2 + 7^2 + 71^2.
MATHEMATICA
mx = 20; ps = Prime[Range[2, mx + 1]]; t = Table[ps[[i]]^2 + ps[[j]]^2 + ps[[k]]^2, {i, mx}, {j, i + 1, mx}, {k, j + 1, mx}]; Select[Union[Flatten[t]], # <= 34 + ps[[-1]]^2 && PrimeQ[#] &] (* T. D. Noe, May 01 2012 *)
PROG
(PARI) list(lim)=my(v=List(), t); lim\=1; forprime(p=7, sqrt(lim), forprime(q=5, min(sqrtint(lim-p^2-9), p-1), t=p^2+q^2; forprime(r=3, min(sqrtint(lim-t), q-1), if(isprime(t+r^2), listput(v, t+r^2))))); vecsort(Vec(v), , 8)
\\ Charles R Greathouse IV, May 01 2012
CROSSREFS
Cf. A137364 (the same with repetitions). - Zak Seidov, Jun 03 2014
Sequence in context: A111078 A106962 A137364 * A106094 A142443 A044415
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 01 2012
STATUS
approved