login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123597
Primes of the form p^3 + q^3 + r^3, where p, q and r are primes.
2
43, 179, 277, 359, 397, 593, 811, 1483, 2017, 2213, 2251, 2447, 2689, 4421, 4519, 4967, 5381, 6271, 7109, 7229, 9181, 9521, 10169, 11897, 12853, 13103, 13841, 14489, 16561, 17107, 20357, 24443, 24677, 25747, 26711, 27917, 30161, 30259, 31193, 31247, 32579, 36161
OFFSET
1,1
COMMENTS
a(n) is a subset of A007490(n) = {3, 17, 29, 43, 73, 127, 179, 197, 251, 277, ...}, i.e., primes of the form x^3 + y^3 + z^3.
EXAMPLE
a(1) = 43 because 43 = 2^3 + 2^3 + 3^3 is prime and 2^3 + 2^3 + 2^3 = 24 is composite.
MATHEMATICA
lst={}; Do[Do[Do[p=n^3+m^3+k^3; If[PrimeQ[p]&&PrimeQ[n]&&PrimeQ[m]&&PrimeQ[k], AppendTo[lst, p]], {n, 4!}], {m, 4!}], {k, 4!}]; Take[Union[lst], 16] (* Vladimir Joseph Stephan Orlovsky, May 23 2009 *)
With[{nn=40}, Select[Total/@Tuples[Prime[Range[nn]]^3, 3], PrimeQ[#]&&#<= nn^3+ 16&]]//Union (* Harvey P. Dale, Sep 08 2021 *)
CROSSREFS
Cf. A007490 = Primes of form x^3 + y^3 + z^3.
Sequence in context: A162295 A187722 A158628 * A138631 A309905 A142115
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 14 2006
STATUS
approved