login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137365
Prime numbers n such that n = p1^3 + p2^3 + p3^3, a sum of cubes of 3 distinct prime numbers.
5
1483, 5381, 6271, 7229, 9181, 11897, 13103, 13841, 14489, 17107, 20357, 25747, 26711, 27917, 30161, 30259, 31247, 32579, 36161, 36583, 36677, 36899, 36901, 42083, 48817, 54181, 55511, 55691, 56377, 56897, 57637, 59093, 64151, 66347
OFFSET
1,1
COMMENTS
Numbers n may have multiple decompositions; for example, n=185527 and n=451837 have two, and n=8627527 and n=32816503 have three. The smallest n with more than one decomposition is n = 185527 = 13^3+43^3+47^3 = 19^3+31^3+53^3, the 94th in the sequence. - R. J. Mathar, May 01 2008
Primes in A138853 and A138854. - M. F. Hasler, Apr 13 2008
The least prime, p, which has n decompositions {with its primes} is 1483 = {3, 5, 11}; 185527 = {13, 43, 47} & {19, 31, 53}; 8627527 = {19, 151, 173}, {33, 139, 181} & 71, 73, 199} and 1122871751 = {113, 751, 887}, {131, 701, 919}, {151, 659, 941} & {29, 107, 1039}. - Robert G. Wilson v, May 04 2008
The number of terms < 10^n: 0, 0, 0, 5, 56, 327, 2172, 13417, 86264, 567211, ..., . - Robert G. Wilson v, May 04 2008
The number of decompositions < 10^n: 0, 0, 0, 5, 56, 330, 2201, 13609, 87200, 571770, ..., . - Robert G. Wilson v, May 04 2008
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..13418 (duplicates omitted)
Robert G. Wilson v, Table of n, a(n) for n = 1..13610 (duplicates included)
FORMULA
A137365 = A000040 intersect A138853 = A000040 intersect A138854. - M. F. Hasler, Apr 13 2008
EXAMPLE
1483=3^3+5^3+11^3, 5381=17^3+7^3+5^3, 6271=3^3+11^3+17^3, etc.
MAPLE
# From R. J. Mathar: (Start)
isA030078 := proc(n) local cbr; cbr := floor(root[3](n)) ; if cbr^3 = n and isprime(cbr) then true ; else false; fi ; end:
isA137365 := proc(n) local p1, p2, p3, p3cub ; if isprime(n) then p1 := 2 ; while p1^3 <= n-16 do p2 := nextprime(p1) ; while p1^3+p2^3 <= n-8 do p3cub := n-p1^3-p2^3 ; if p3cub> p2^3 and isA030078(p3cub) then RETURN(true) ; fi ; p2 := nextprime(p2) ; od: p1 := nextprime(p1) ; od; RETURN(false) ; else RETURN(false) ; fi ; end:
for i from 1 do if isA137365( ithprime(i)) then printf("%d\n", ithprime(i)) ; fi ; od:
# (End)
MATHEMATICA
Array[r, 99]; Array[y, 99]; For[i = 0, i < 10^2, r[i] = y[i] = 0; i++ ]; z = 4^2; n = 0; For[i1 = 1, i1 < z, a = Prime[i1]; a2 = a^3; For[i2 = i1 + 1, i2 < z, b = Prime[i2]; b2 = b^3; For[i3 = i2 + 1, i3 < z, c = Prime[i3]; c2 = c^3; p = a2 + b2 + c2; If[PrimeQ[p], Print[a2, " + ", b2, " + ", c2, " = ", p]; n++; r[n] = p]; i3++ ]; i2++ ]; i1++ ]; Sort[Array[r, 88]] (* Vladimir Joseph Stephan Orlovsky *)
lst = {}; Do[p = Prime[q]^3 + Prime[r]^3 + Prime[s]^3; If[PrimeQ@ p, AppendTo[lst, p]], {q, 13}, {r, q - 1}, {s, r - 1}]; Take[Sort@ lst, 36] (* Robert G. Wilson v, Apr 13 2008 *)
nn=20; lim=Prime[nn]^3+3^3+5^3; Union[Select[Total[#^3]& /@ Subsets[Prime[Range[2, nn]], {3}], #<lim && PrimeQ[#]&]] (* Harvey P. Dale, Jan 15 2011 *)
PROG
(PARI) c=0; forprime(p=1, 10^6, isA138853(p) & write("b137365.txt", c++, " ", p)) \\ M. F. Hasler, Apr 13 2008
CROSSREFS
Cf. A137366.
Cf. A024975 (a^3+b^3+c^3, a>b>c>0), A122723 (primes in A024975), A138853-A138854.
Sequence in context: A238253 A035864 A255087 * A137366 A045008 A327880
KEYWORD
nonn
AUTHOR
EXTENSIONS
Corrected and extended by Zak Seidov, R. J. Mathar and Robert G. Wilson v, Apr 12 2008
Further edits by R. J. Mathar and N. J. A. Sloane, Jun 07 2008
STATUS
approved