login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263726
Least prime p such that p^2 + A263977(n)^2 is prime.
4
2, 3, 2, 5, 2, 5, 2, 3, 3, 7, 2, 11, 2, 5, 2, 5, 3, 5, 5, 5, 2, 5, 11, 3, 2, 5, 2, 5, 2, 3, 3, 5, 19, 2, 5, 2, 13, 7, 3, 11, 11, 2, 3, 13, 3, 11, 2, 29, 2, 5, 3, 5, 2, 5, 5, 7, 7, 3, 11, 2, 11, 2, 3, 11, 7, 5, 2, 5, 2, 3, 3, 5, 2, 11, 5, 5, 3, 3, 59, 2, 11, 2, 3, 7, 13, 5, 2, 5, 7
OFFSET
1,1
COMMENTS
The least k, such that prime(n) is the smallest prime p for which k^2 + p^2 is also prime, is in A263466.
LINKS
Stephan Baier and Liangyi Zhao, On Primes Represented by Quadratic Polynomials, Anatomy of Integers, CRM Proc. & Lecture Notes, Vol. 46, Amer. Math. Soc. 2008, pp. 169 - 166.
Étienne Fouvry and Henryk Iwaniec, Gaussian primes, Acta Arithmetica 79:3 (1997), pp. 249-287.
EXAMPLE
A263977(1) = 1, and 2 and 2^2 + 1^2 = 5 are prime, so a(1) = 2.
MATHEMATICA
f[n_] := Block[{p = 2}, While[! PrimeQ[n^2 + p^2] && p < 1500, p = NextPrime@ p]; If[p > 1500, 0, p]]; lst = {}; k = 1; While[k < 130, If[f@ k > 0, AppendTo[lst, f@ k]]; k++]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved