|
|
A166226
|
|
Bell number n modulo n.
|
|
1
|
|
|
0, 0, 2, 3, 2, 5, 2, 4, 6, 5, 2, 1, 2, 12, 5, 3, 2, 13, 2, 12, 15, 5, 2, 9, 3, 18, 10, 3, 2, 27, 2, 12, 4, 5, 0, 1, 2, 24, 28, 27, 2, 23, 2, 8, 5, 5, 2, 33, 24, 20, 49, 39, 2, 5, 27, 28, 34, 5, 2, 57, 2, 36, 6, 51, 47, 19, 2, 52, 15, 25, 2, 49, 2, 42, 22, 71, 59, 19, 2, 44, 23, 5, 2, 65, 84
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(n) = 2 (mod n) when n is prime.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..10000
Greg Hurst, Andrew Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696 [math.CO], (2009)
|
|
FORMULA
|
a(n) = A000110(n) mod n.
a(p^m) = m+1 (mod p) when p is prime and m >= 1 (see Lemma 3.1 in the Hurst/Schultz reference). - Joerg Arndt, Jun 01 2016
|
|
EXAMPLE
|
a(3)=a(5)=a(7)=a(11)=2.
|
|
MAPLE
|
seq(combinat:-bell(n) mod n, n=1..100); # Robert Israel, Feb 03 2016
|
|
MATHEMATICA
|
Array[n \[Function] Mod[BellB[n], n], 1000] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
Table[Mod[BellB[n], n], {n, 1, 100}] (* G. C. Greubel, Feb 02 2016 *)
|
|
PROG
|
(MAGMA) [Bell(n) mod n: n in [1..100]]; Vincenzo Librandi, Feb 03 2016
|
|
CROSSREFS
|
See the Bell numbers sequence A000110.
Sequence in context: A319431 A258581 A108501 * A263978 A326810 A263726
Adjacent sequences: A166223 A166224 A166225 * A166227 A166228 A166229
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Thierry Banel (tbanel(AT)gmail.com), Oct 09 2009
|
|
EXTENSIONS
|
More terms from R. J. Mathar and J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
|
|
STATUS
|
approved
|
|
|
|