|
|
A166225
|
|
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
|
|
1
|
|
|
1, 41, 1640, 65600, 2624000, 104960000, 4198400000, 167936000000, 6717440000000, 268697600000000, 10747903999999180, 429916159999934400, 17196646399996064820, 687865855999790145600, 27514634239989507936000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (39, 39, 39, 39, 39, 39, 39, 39, 39, -780).
|
|
FORMULA
|
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(780*t^10 - 39*t^9 - 39*t^8 - 39*t^7 - 39*t^6 - 39*t^5 - 39*t^4 - 39*t^3 - 39*t^2 - 39*t + 1).
|
|
MAPLE
|
seq(coeff(series((1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
|
|
MATHEMATICA
|
CoefficientList[Series[(1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11), {t, 0, 30}], t] (* G. C. Greubel, May 07 2016 *)
coxG[{10, 780, -39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 30 2018 *)
|
|
PROG
|
(Sage)
def A166225_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^10)/(1-40*t+819*t^10-780*t^11) ).list()
A166225_list(30) # G. C. Greubel, Mar 11 2020
|
|
CROSSREFS
|
Sequence in context: A164685 A165173 A165692 * A166435 A166714 A167094
Adjacent sequences: A166222 A166223 A166224 * A166226 A166227 A166228
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Dec 03 2009
|
|
STATUS
|
approved
|
|
|
|