login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166228
Alternating sum of large Schroeder numbers.
3
1, 1, 5, 17, 73, 321, 1485, 7073, 34513, 171585, 866133, 4427313, 22870425, 119208321, 626178717, 3311424321, 17615732385, 94202293633, 506116560293, 2730607756881, 14788011564009, 80361643637953, 438070231780973
OFFSET
0,3
COMMENTS
Hankel transform is A166231. Binomial transform is A166229.
LINKS
FORMULA
G.f.: (1-x-sqrt(1-6x+x^2))/(2x(1+x));
a(n) = Sum{k=0..n} (-1)^k*A006318(n-k) = Sum_{k=0..n} (-1)^(n-k)*A006318(k).
Conjecture: (n+1)*a(n) +(4-5n)*a(n-1) +(1-5n)*a(n-2) +(n-2)*a(n-3)=0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(48+34*sqrt(2))*(3+2*sqrt(2))^n/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[1-6*x+x^2])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
CROSSREFS
Sequence in context: A149721 A325156 A149722 * A362177 A102387 A149723
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 09 2009
STATUS
approved