login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325156
G.f.: A(x) = Sum_{n>=0} x^n * (1 + (-1)^n * sqrt(A(x)))^n / (1 - (-1)^n * x*sqrt(A(x)))^(n+1).
2
1, 1, 5, 17, 73, 305, 1357, 6113, 28241, 132257, 628181, 3015281, 14611481, 71367505, 351026077, 1737069249, 8642422689, 43204965953, 216918504613, 1093299119057, 5529714637545, 28057603921521, 142778662494957, 728511386126497, 3726298158066673, 19103173934709985, 98140344111905909, 505171574309714993, 2605081666723574969, 13456821571101555345, 69623363954847218493
OFFSET
0,3
COMMENTS
Compare the g.f. to the following related identities.
(1.a) F(x) = Sum_{n>=0} x^n * (1 + sqrt(F(x)))^n / (1 + x*sqrt(F(x)))^(n+1) holds when G(x) = 1/(1-x).
(1.b) F(x) = Sum_{n>=0} x^n * (1 - sqrt(F(x)))^n / (1 - x*sqrt(F(x)))^(n+1) holds when G(x) = 1/(1-x).
(2.a) G(x) = Sum_{n>=0} x^n * (1 + (-1)^n/sqrt(G(x)))^n / (1 - (-1)^n*x/sqrt(G(x)))^(n+1) holds when G(x) = (1 - x + 4*x^2)/(1 - x)^2.
(2.b) G(x) = Sum_{n>=0} x^n * (1 - (-1)^n/sqrt(G(x)))^n / (1 + (-1)^n*x/sqrt(G(x)))^(n+1) holds when G(x) = (1 - x + 4*x^2)/(1 - x)^2.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} x^n * (1 + (-1)^n * sqrt(A(x)))^n / (1 - (-1)^n * x*sqrt(A(x)))^(n+1).
(2) A(x) = Sum_{n>=0} x^n * (1 - (-1)^n * sqrt(A(x)))^n / (1 + (-1)^n * x*sqrt(A(x)))^(n+1).
(3) 0 = 4*x^2*A(x)^2 - (1-x)^2*A(x) + (1-x).
(4) A(x) = ( (1-x)^2 - sqrt( (1-x)*(1 - 3*x - 13*x^2 - x^3) ) )/(8*x^2).
FORMULAS INVOLVING TERMS.
a(n) = 1 (mod 4) for n >= 0.
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2 + 17*x^3 + 73*x^4 + 305*x^5 + 1357*x^6 + 6113*x^7 + 28241*x^8 + 132257*x^9 + 628181*x^10 + 3015281*x^11 + 14611481*x^12 + ...
such that A = A(x) satisfies
A(x) = 1/(1 + x*sqrt(A)) + x*(1 + sqrt(A))/(1 - x*sqrt(A))^2 + x^2*(1 - sqrt(A))^2/(1 + x*sqrt(A))^3 + x^3*(1 + sqrt(A))^3/(1 - x*sqrt(A))^4 + x^4*(1 - sqrt(A))^4/(1 + x*sqrt(A))^5 + x^5*(1 + sqrt(A))^5/(1 - x*sqrt(A))^6 + x^6*(1 - sqrt(A))^6/(1 + x*sqrt(A))^7 + x^7*(1 + sqrt(A))^7/(1 - x*sqrt(A))^8 + ...
also,
A(x) = 1/(1 - x*sqrt(A)) + x*(1 - sqrt(A))/(1 + x*sqrt(A))^2 + x^2*(1 + sqrt(A))^2/(1 - x*sqrt(A))^3 + x^3*(1 - sqrt(A))^3/(1 + x*sqrt(A))^4 + x^4*(1 + sqrt(A))^4/(1 - x*sqrt(A))^5 + x^5*(1 - sqrt(A))^5/(1 + x*sqrt(A))^6 + x^6*(1 + sqrt(A))^6/(1 - x*sqrt(A))^7 + x^7*(1 - sqrt(A))^7/(1 + x*sqrt(A))^8 + ...
RELATED SERIES.
sqrt(A(x)) = 1 + 1/2*x + 19/8*x^2 + 117/16*x^3 + 3843/128*x^4 + 30751/256*x^5 + 532887/1024*x^6 + 4692925/2048*x^7 + 341106147/32768*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=Vec(sum(n=0, #A, x^n*(1 + (-1)^n*sqrt(Ser(A)))^n/(1 - (-1)^n*x*sqrt(Ser(A)))^(n+1)))); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=Vec(sum(n=0, #A, x^n*(1 - (-1)^n*sqrt(Ser(A)))^n/(1 + (-1)^n*x*sqrt(Ser(A)))^(n+1)))); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A325157.
Sequence in context: A149719 A149720 A149721 * A149722 A166228 A362177
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 06 2019
STATUS
approved