login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325154
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(2*n-1) - A(x))^n.
0
1, 1, 4, 60, 1349, 40210, 1470027, 63225750, 3116555468, 172936040306, 10661699020596, 722933543336296, 53476543241702021, 4286318739039468220, 370139507278333619231, 34264675353237245461705, 3385595826616475280589858, 355676742010175185149150523, 39592541401227701053287450374, 4655516336942715288212969823798, 576645913391345319618489456738288, 75048370900002385430200781452328814
OFFSET
0,3
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(2*n-1) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(2*n^2-n) / (1 + (1+x)^(2*n)*A(x))^(n+1).
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 60*x^3 + 1349*x^4 + 40210*x^5 + 1470027*x^6 + 63225750*x^7 + 3116555468*x^8 + 172936040306*x^9 + 10661699020596*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^3 - A(x))^2 + ((1+x)^5 - A(x))^3 + ((1+x)^7 - A(x))^4 + ((1+x)^9 - A(x))^5 + ((1+x)^11 - A(x))^6 + ((1+x)^13 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)^2*A(x))^2 + (1+x)^6/(1 + (1+x)^4*A(x))^3 + (1+x)^15/(1 + (1+x)^6*A(x))^4 + (1+x)^28/(1 + (1+x)^8*A(x))^5 + (1+x)^45/(1 + (1+x)^10*A(x))^6 + (1+x)^66/(1 + (1+x)^6*A(x))^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m-1) - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A303056.
Sequence in context: A181418 A208890 A370498 * A013486 A013483 A013484
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 12 2019
STATUS
approved