login
A370498
Number of paths from (0, 0) to (2n, 2n) in an n X n grid using only steps north, northeast and east (i.e., steps (1, 0), (1, 1), and (0, 1)) and that do not pass through diagonal points with odd coordinates.
0
1, 4, 60, 1204, 27724, 691812, 18198492, 496924692, 13951437804, 400212569284, 11679079547260, 345621250279284, 10347645099250060, 312857431914558244, 9538937406065229084, 292961855077076241108, 9054857076142602126636, 281439018537947499788676, 8791174819979940884130492
OFFSET
0,2
FORMULA
a(n) = b(2*n,2*n) where b(n,0) = b(0,m) = 1, b(2n+1,2n+1) = 0 and b(n,m) = b(n-1,m-1) + b(n-1,m) + b(n,m-1) otherwise.
a(n) = ceiling((2/3)*A138462(n)).
a(n) ~ (1 + sqrt(2))^(4*n+1) / (3 * 2^(5/4) * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 14 2024
D-finite with recurrence +n*(2*n+1)*a(n) +(-70*n^2+73*n-15)*a(n-1) +(70*n^2-277*n+270)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 25 2024
MAPLE
a:= proc(n) option remember; `if`(n<2, 4^n, ((8*n-6)*(34*n^2-51*n+11)
*a(n-1)-(n-2)*(4*n-1)*(2*n-3)*a(n-2))/(n*(4*n-5)*(2*n+1)))
end:
seq(a(n), n=0..18); # Alois P. Heinz, Feb 20 2024
MATHEMATICA
A[n_, m_] := A[n, m] = Which[m*n == 0, 1, m == n && Mod[m, 2] == 1, 0, True, A[n - 1, m] + A[n, m - 1] + A[n - 1, m - 1]]; Table[A[2 n, 2 n], {n, 0, 45}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved