login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351269
Sum of the 6th powers of the squarefree divisors of n.
11
1, 65, 730, 65, 15626, 47450, 117650, 65, 730, 1015690, 1771562, 47450, 4826810, 7647250, 11406980, 65, 24137570, 47450, 47045882, 1015690, 85884500, 115151530, 148035890, 47450, 15626, 313742650, 730, 7647250, 594823322, 741453700, 887503682, 65, 1293240260
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^6 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^6 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^6. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^6 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(7)/(7*zeta(2)) = 0.0875718... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 65; a(4) = Sum_{d|4} d^6 * mu(d)^2 = 1^6*1 + 2^6*1 + 4^6*0 = 65.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^6); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
CROSSREFS
Cf. A008683 (mu), A013661, A013665.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), this sequence (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A200890 A268265 A353939 * A088677 A321562 A034680
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved