login
A351270
Sum of the 7th powers of the squarefree divisors of n.
11
1, 129, 2188, 129, 78126, 282252, 823544, 129, 2188, 10078254, 19487172, 282252, 62748518, 106237176, 170939688, 129, 410338674, 282252, 893871740, 10078254, 1801914272, 2513845188, 3404825448, 282252, 78126, 8094558822, 2188, 106237176, 17249876310, 22051219752, 27512614112
OFFSET
1,2
COMMENTS
Inverse Möbius transform of n^7 * mu(n)^2. - Wesley Ivan Hurt, Jun 08 2023
LINKS
N. J. A. Sloane, Transforms.
FORMULA
a(n) = Sum_{d|n} d^7 * mu(d)^2.
Multiplicative with a(p^e) = 1 + p^7. - Amiram Eldar, Feb 06 2022
G.f.: Sum_{k>=1} mu(k)^2 * k^7 * x^k / (1 - x^k). - Ilya Gutkovskiy, Feb 06 2022
Sum_{k=1..n} a(k) ~ c * n^8, where c = zeta(8)/(8*zeta(2)) = Pi^6/12600 = 0.0763007... . - Amiram Eldar, Nov 10 2022
EXAMPLE
a(4) = 129; a(4) = Sum_{d|4} d^7 * mu(d)^2 = 1^7*1 + 2^7*1 + 4^7*0 = 129.
MATHEMATICA
a[1] = 1; a[n_] := Times @@ (1 + FactorInteger[n][[;; , 1]]^7); Array[a, 100] (* Amiram Eldar, Feb 06 2022 *)
CROSSREFS
Cf. A008683 (mu), A013661, A013666.
Sum of the k-th powers of the squarefree divisors of n for k=0..10: A034444 (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), this sequence (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequence in context: A230187 A240417 A353940 * A088719 A321563 A034681
KEYWORD
nonn,mult
AUTHOR
Wesley Ivan Hurt, Feb 05 2022
STATUS
approved