login
A034681
Sum of seventh powers of unitary divisors.
2
1, 129, 2188, 16385, 78126, 282252, 823544, 2097153, 4782970, 10078254, 19487172, 35850380, 62748518, 106237176, 170939688, 268435457, 410338674, 617003130, 893871740, 1280094510, 1801914272, 2513845188, 3404825448
OFFSET
1,2
LINKS
FORMULA
Dirichlet g.f.: zeta(s)*zeta(s-7)/zeta(2s-7). - R. J. Mathar, Apr 12 2011
If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(7*k_j)). - Ilya Gutkovskiy, Nov 04 2018
Sum_{k=1..n} a(k) ~ (Pi*n)^8 / (75600*Zeta(9)). - Vaclav Kotesovec, Feb 07 2019
MATHEMATICA
Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^7], {n, 1, 50}] (* Vaclav Kotesovec, Feb 07 2019 *)
a[1] = 1; a[n_] := Times @@ (1 + First[#]^(7*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *)
CROSSREFS
Row n=7 of A286880.
Sequence in context: A351270 A088719 A321563 * A351302 A017677 A013955
KEYWORD
nonn,mult
STATUS
approved