The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A034678 Sum of fourth powers of unitary divisors. 3
 1, 17, 82, 257, 626, 1394, 2402, 4097, 6562, 10642, 14642, 21074, 28562, 40834, 51332, 65537, 83522, 111554, 130322, 160882, 196964, 248914, 279842, 335954, 390626, 485554, 531442, 617314, 707282, 872644, 923522, 1048577, 1200644 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 FORMULA Dirichlet g.f.: zeta(s)*zeta(s-4)/zeta(2*s-4). - R. J. Mathar, Mar 04 2011 If n = Product (p_j^k_j) then a(n) = Product (1 + p_j^(4*k_j)). - Ilya Gutkovskiy, Nov 04 2018 Sum_{k=1..n} a(k) ~ 189 * Zeta(5) * n^5 / Pi^6. - Vaclav Kotesovec, Feb 01 2019 MATHEMATICA Table[Total[Select[Divisors[n], CoprimeQ[#, n/#] &]^4], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *) a[1] = 1; a[n_] := Times @@ (1 + First[#]^(4*Last[#]) & /@ FactorInteger[n]); s = Array[a, 50] (* Amiram Eldar, Aug 10 2019 *) PROG (PARI) A000012=direuler(p=2, 119, 1/(1-X)) ; A000583=direuler(p=2, 119, 1/(1-p^4*X)) ; A000290x=direuler(p=2, 119, 1-p^4*X^2) ; dirmul(dirmul(A000012, A000583), A000290x) /* R. J. Mathar, Mar 05 2011 */ CROSSREFS Cf. A034444, A034448. Row n=4 of A286880. Sequence in context: A184982 A088687 A321560 * A065960 A017671 A001159 Adjacent sequences: A034675 A034676 A034677 * A034679 A034680 A034681 KEYWORD nonn,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 1 09:50 EDT 2023. Contains 361688 sequences. (Running on oeis4.)