login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088719
Numbers that can be represented as a^7 + b^7, with 0 < a < b, in exactly one way.
7
129, 2188, 2315, 16385, 16512, 18571, 78126, 78253, 80312, 94509, 279937, 280064, 282123, 296320, 358061, 823544, 823671, 825730, 839927, 901668, 1103479, 2097153, 2097280, 2099339, 2113536, 2175277, 2377088, 2920695
OFFSET
1,1
COMMENTS
Conjecture: no number can be expressed as such a sum in more than one way.
No solutions to the 7.2.2 (A^7 + B^7 = C^7 + D^7), 7.2.3, 7.2.4, or 7.2.5 equations are known. The smallest 7.2.6 equation is: 125^7 + 24^7 = 121^7 + 94^7 + 83^7 + 61^7 + 57^7 + 27^7 = 476841744674549. - Jonathan Vos Post, May 04 2006
REFERENCES
Sastry, S. and Rai, T. "On Equal Sums of Like Powers." Math. Student 16, 18-19, 1948.
LINKS
R. L. Ekl, Equal Sums of Four Seventh Powers, Math. Comput. 65, 1755-1756, 1996.
R. L. Ekl, New Results in Equal Sums of Like Powers, Math. Comput. 67, 1309-1315, 1998.
Eric Weisstein's World of Mathematics, Diophantine Equation: 7th Powers
EXAMPLE
129 = 1^7+2^7.
MATHEMATICA
lst={}; e=7; Do[Do[x=a^e; Do[y=b^e; If[x+y==n, AppendTo[lst, n]], {b, Floor[(n-x)^(1/e)], a+1, -1}], {a, Floor[n^(1/e)], 1, -1}], {n, 3*8!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 23 2009 *)
PROG
(PARI) powers2(m1, m2, p1) = { for(k=m1, m2, a=powers(k, p1); if(a==1, print1(k", ")) ); } powers(n, p) = { z1=0; z2=0; c=0; cr = floor(n^(1/p)+1); for(x=1, cr, for(y=x+1, cr, z1=x^p+y^p; if(z1 == n, c++); ); ); return(c) }
CROSSREFS
Cf. A003369, A155468 (8th powers).
Sequence in context: A240417 A353940 A351270 * A321563 A034681 A351302
KEYWORD
nonn
AUTHOR
Cino Hilliard, Nov 22 2003
EXTENSIONS
Edited by Don Reble, May 03 2006
STATUS
approved