login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353940
Smallest b > 1 such that b^(p-1) == 1 (mod p^7) for p = prime(n).
8
129, 2186, 32318, 82681, 758546, 6826318, 21444846, 44702922, 178042767, 393747520, 1548729003, 4741156070, 2203471139, 3242334565, 16609835418, 114175761515, 30338830655, 20115543070, 114457309347, 370162324382, 57877856575, 12692933349, 280646695286, 127762186531
OFFSET
1,1
PROG
(PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^7)^(p-1)==1, return(b)))
(Python)
from sympy import prime
from sympy.ntheory.residue_ntheory import nthroot_mod
def A353940(n): return 2**7+1 if n == 1 else int(nthroot_mod(1, (p:= prime(n))-1, p**7, True)[1]) # Chai Wah Wu, May 17 2022
CROSSREFS
Row k = 7 of A257833.
Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353938 (k=5), A353939 (k=6), A353941 (k=8), A353942 (k=9), A353943 (k=10).
Sequence in context: A268266 A230187 A240417 * A351270 A088719 A321563
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 12 2022
EXTENSIONS
a(9)-a(11) from Amiram Eldar, May 12 2022
More terms from Jinyuan Wang, May 17 2022
STATUS
approved