login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353938
Smallest b > 1 such that b^(p-1) == 1 (mod p^5) for p = prime(n).
8
33, 242, 1068, 1353, 27216, 109193, 15541, 133140, 495081, 1115402, 2754849, 1353359, 649828, 3228564, 2359835, 4694824, 7044514, 28538377, 1111415, 77588426, 16178110, 2553319, 9571390, 158485540, 18664438, 146773512, 45639527, 448251412, 48834112, 141076650
OFFSET
1,1
MATHEMATICA
a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^5] != 1, b++]; b]; Array[a, 12] (* Amiram Eldar, May 12 2022 *)
PROG
(PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^5)^(p-1)==1, return(b)))
(Python)
from sympy import prime
from sympy.ntheory.residue_ntheory import nthroot_mod
def A353938(n): return 2**5+1 if n == 1 else int(nthroot_mod(1, (p:= prime(n))-1, p**5, True)[1]) # Chai Wah Wu, May 17 2022
CROSSREFS
Row k = 5 of A257833.
Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353939 (k=6), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10).
Sequence in context: A142993 A230186 A075040 * A274639 A306879 A178448
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 12 2022
STATUS
approved