login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142993
Crystal ball sequence for the lattice C_4.
5
1, 33, 225, 833, 2241, 4961, 9633, 17025, 28033, 43681, 65121, 93633, 130625, 177633, 236321, 308481, 396033, 501025, 625633, 772161, 943041, 1140833, 1368225, 1628033, 1923201
OFFSET
0,2
COMMENTS
The lattice C_4 consists of all integer lattice points v = (a,b,c,d) in Z^4 such that a + b + c + d is even, equipped with the taxicab type norm ||v|| = (1/2) * (|a| + |b| + |c| + |d|). The crystal ball sequence of C_4 gives the number of lattice points v in C_4 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
LINKS
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
FORMULA
Partial sums of A019560. a(n) = (2*n+1)^2*(4*n^2+4*n+3)/3 = Sum_{k = 0..4} C(8,2k)*C(n+k,4) = Sum_{k = 0..4} C(8,2k+1)*C(n+k+1/2,4). O.g.f.: (1+28*x+70*x^2+28*x^3+x^4)/(1-x)^5 = (1/(1-x)) * T(4,(1+x)/(1-x)), where T(n,x) denotes the Chebyshev polynomial of the first kind. 2*log(2) = 17/12 - Sum_{n >= 1} 1/(n*a(n-1)*a(n)).
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(33 - 3/(41 - 60/(57 - 315/(81 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*4^2))))).
E.g.f.: exp(x)*(1 + 32*x + 160*x^2/2! + 256*x^3/3! + 128*x^4/4!).
Note that T(8, i*sqrt(x)) = 1 + 32*x + 160*x^2 + 256*x^3 + 128*x^4. See A008310. (End)
EXAMPLE
a(1) = 33. The origin has norm 0. The 32 lattice points in Z^4 of norm 1 (as defined above) are +-2*e_i, 1 <= i <= 4 and (+- e_i +- e_j), 1 <= i < j <= 4, where e_1, e_2, e_3 and e_4 denotes the standard basis of Z^4. These 32 vectors form a root system of type C_4. Hence sequence begins 1, 1 + 32 = 33, ... .
MAPLE
a := n -> (2*n+1)^2*(4*n^2+4*n+3)/3: seq(a(n), n = 0..24)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 18 2008
STATUS
approved