OFFSET
0,2
COMMENTS
The lattice C_4 consists of all integer lattice points v = (a,b,c,d) in Z^4 such that a + b + c + d is even, equipped with the taxicab type norm ||v|| = (1/2) * (|a| + |b| + |c| + |d|). The crystal ball sequence of C_4 gives the number of lattice points v in C_4 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, Annales de l'Institut Fourier, Tome 49 (1999) no. 3, pp. 727-762.
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
Partial sums of A019560. a(n) = (2*n+1)^2*(4*n^2+4*n+3)/3 = Sum_{k = 0..4} C(8,2k)*C(n+k,4) = Sum_{k = 0..4} C(8,2k+1)*C(n+k+1/2,4). O.g.f.: (1+28*x+70*x^2+28*x^3+x^4)/(1-x)^5 = (1/(1-x)) * T(4,(1+x)/(1-x)), where T(n,x) denotes the Chebyshev polynomial of the first kind. 2*log(2) = 17/12 - Sum_{n >= 1} 1/(n*a(n-1)*a(n)).
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k-1)) = 1/(33 - 3/(41 - 60/(57 - 315/(81 - ... - n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*4^2))))).
E.g.f.: exp(x)*(1 + 32*x + 160*x^2/2! + 256*x^3/3! + 128*x^4/4!).
Note that T(8, i*sqrt(x)) = 1 + 32*x + 160*x^2 + 256*x^3 + 128*x^4. See A008310. (End)
EXAMPLE
a(1) = 33. The origin has norm 0. The 32 lattice points in Z^4 of norm 1 (as defined above) are +-2*e_i, 1 <= i <= 4 and (+- e_i +- e_j), 1 <= i < j <= 4, where e_1, e_2, e_3 and e_4 denotes the standard basis of Z^4. These 32 vectors form a root system of type C_4. Hence sequence begins 1, 1 + 32 = 33, ... .
MAPLE
a := n -> (2*n+1)^2*(4*n^2+4*n+3)/3: seq(a(n), n = 0..24)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Jul 18 2008
STATUS
approved