OFFSET
1,2
COMMENTS
Number of potential flows in a 2 X 2 matrix with integer velocities in -n..n, i.e., number of 2 X 2 matrices with adjacent elements differing by no more than n, counting matrices differing by a constant only once. - R. H. Hardin, Feb 27 2002
Number of ordered quadruples (a,b,c,d), -(n-1) <= a,b,c,d <= n-1, such that a+b+c+d = 0. - Benoit Cloitre, Jun 14 2003
If Y and Z are 2-blocks of a (2n+1)-set X then a(n-1) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 18, 48, 32, 0, 0, 0, ...]. - Gary W. Adamson, Jul 19 2008
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
R. Bacher, P. de la Harpe and B. Venkov, Séries de croissance et séries d'Ehrhart associées aux réseaux de racines, C. R. Acad. Sci. Paris, 325 (Series 1) (1997), 1137-1142.
Milan Janjic, Two Enumerative Functions
T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
From Peter Bala, Jul 18 2008: (Start)
The following remarks about the C_3 lattice assume the sequence offset is 0.
Partial sums of A010006. So this sequence is the crystal ball sequence for the C_3 lattice - row 3 of A142992. The lattice C_3 consists of all integer lattice points v = (a,b,c) in Z^3 such that a + b + c is even, equipped with the taxicab type norm ||v|| = (1/2) * (|a| + |b| + |c|).
The crystal ball sequence of C_3 gives the number of lattice points v in C_3 with ||v|| <= n for n = 0,1,2,3,... [Bacher et al.].
For example, a(1) = 19 because the origin has norm 0 and the 18 lattice points in Z^3 of norm 1 (as defined above) are +-(2,0,0), +-(0,2,0), +-(0,0,2), +-(1,1,0), +-(1,0,1), +-(0,1,1), +-(1,-1,0), +-(1,0,-1) and +-(0,1,-1). These 18 vectors form a root system of type C_3.
O.g.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4 = x/(1 - x) * T(3, (1 + x)/(1 - x)), where T(n, x) denotes the Chebyshev polynomial of the first kind.
2*log(2) = 4/3 + Sum_{n >= 1} 1/(n*a(n)*a(n+1)). (End)
a(n+1) = (1/Pi) * Integral_{x=0..Pi} (sin((n+1/2)*x)/sin(x/2))^4. - Yalcin Aktar, Nov 02 2011, corrected by R. J. Mathar, Dec 01 2011
From G. C. Greubel, Dec 01 2017: (Start)
G.f.: x*(1 + 15*x + 15*x^2 + x^3)/(1 - x)^4.
E.g.f.: (-3 + 6*x + 24*x^2 + 16*x^3)*exp(x)/3 + 1. (End)
a(n) = A005900(2n-1). - Ivan N. Ianakiev, Mar 27 2022
From Peter Bala, Mar 11 2024: (Start)
Sum_{k = 1..n+1} 1/(k*a(k)*a(k+1)) = 1/(19 - 3/(27 - 60/(43 - 315/(67 - ... -n^2*(4*n^2 - 1)/((2*n + 1)^2 + 2*3^2))))).
E.g.f.: exp(x)*(1 + 18*x + 48*x^2/2! + 32*x^3/3!). Note that -T(6, i*sqrt(x)) = 1 + 18*x + 48*x^2 + 32*x^3, where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. See A008310. (End)
MAPLE
MATHEMATICA
Table[(2*n - 1)*(8*n^2 - 8*n + 3)/3, {n, 40}] (* Wesley Ivan Hurt, May 09 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 19, 85, 231}, 30] (* G. C. Greubel, Dec 01 2017 *)
PROG
(PARI) a(n) = { (2*n - 1)*(8*n^2 - 8*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
(PARI) my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+24*x^2+16*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
(Magma) [(2*n-1)*(8*n^2-8*n+3)/3: n in [1..40]]; // Wesley Ivan Hurt, May 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Aug 01 2001
STATUS
approved