The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063488 a(n) = (2*n-1)*(n^2 -n +2)/2. 21
 1, 6, 20, 49, 99, 176, 286, 435, 629, 874, 1176, 1541, 1975, 2484, 3074, 3751, 4521, 5390, 6364, 7449, 8651, 9976, 11430, 13019, 14749, 16626, 18656, 20845, 23199, 25724, 28426, 31311, 34385, 37654, 41124, 44801, 48691, 52800, 57134 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Sum of two consecutive terms of A006003(n) = n*(n^2+1)/2. a(n) = A006003(n-1) + A006003(n). - Alexander Adamchuk, Jun 03 2006 If a 2-set Y and a 3-set Z are disjoint subsets of an n-set X then a(n-4) is the number of 5-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 Milan Janjic, Two Enumerative Functions M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013. T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10). Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA G.f.: (1 + x)*(1 + x + x^2)/(1 - x)^4. - Jaume Oliver Lafont, Aug 30 2009 a(n) = A000217(A000217(n)) - A000217(A000217(n-2)). - Bruno Berselli, Oct 14 2016 E.g.f.: (-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017 MATHEMATICA Table[(2 n - 1) (n^2 - n + 2)/2, {n, 1, 40}] (* Bruno Berselli, Oct 14 2016 *) LinearRecurence[{4, -6, 4, -1}, {1, 6, 20, 49}, 50] (* G. C. Greubel, Dec 01 2017 *) PROG (PARI) { for (n=1, 1000, write("b063488.txt", n, " ", (2*n - 1)*(n^2 - n + 2)/2) ) } \\ Harry J. Smith, Aug 23 2009 (PARI) x='x+O('x^30); Vec(serlaplace((-2 + 4*x + 3*x^2 + 2*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017 (Magma) [(2*n-1)*(n^2 -n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017 CROSSREFS 1/12*t*n*(2*n^2 - 3*n + 1) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496. Cf. A000217, A006003. Partial sums of A005918. Sequence in context: A331754 A050768 A161438 * A299292 A162209 A161699 Adjacent sequences: A063485 A063486 A063487 * A063489 A063490 A063491 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Aug 01 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 09:03 EDT 2024. Contains 373383 sequences. (Running on oeis4.)