The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2. 18
 1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10). Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA From Harvey P. Dale, Dec 18 2011: (Start) a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4). G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End) E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017 MATHEMATICA Table[(2n-1)(5n^2-5n+2)/2, {n, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 18, 80, 217}, 40] (* Harvey P. Dale, Dec 18 2011 *) PROG (PARI) for (n=1, 1000, write("b063495.txt", n, " ", (2*n - 1)*(5*n^2 - 5*n + 2)/2) ) \\ Harry J. Smith, Aug 23 2009 (PARI) x='x+O('x^30); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017 (Magma) [(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017 CROSSREFS 1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496. Sequence in context: A039453 A342560 A219144 * A264850 A039408 A043231 Adjacent sequences: A063492 A063493 A063494 * A063496 A063497 A063498 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Aug 01 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 18 18:58 EDT 2024. Contains 371781 sequences. (Running on oeis4.)