login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063491 a(n) = (2*n - 1)*(3*n^2 - 3*n + 2)/2. 18
1, 12, 50, 133, 279, 506, 832, 1275, 1853, 2584, 3486, 4577, 5875, 7398, 9164, 11191, 13497, 16100, 19018, 22269, 25871, 29842, 34200, 38963, 44149, 49776, 55862, 62425, 69483, 77054, 85156, 93807, 103025, 112828, 123234, 134261 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A triangle has sides of lengths 6*n-3, 6*n^2-6*n+4, and 6*n^2-6*n+7; for n>2 its area is 6*sqrt(a(n)^2 - 1). - J. M. Bergot, Aug 30 2013

[The source of this is using (n,n+1), (n+1,n+2), and (n+2,n+3) as (a,b) in the creation of three Pythagorean triangles with sides b^2-a^2, 2*a*b, and a^2+b^2. Combine the three respective sides to create a new larger triangle, then find its area.  It is not simply working backwards from the sequence. As well, the sequence has this as its first comment to show that the numbers are actually doing something to find a solution.]

REFERENCES

T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002.

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..1000

T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

G.f.: x*(1+x)*(1+7*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012

a(n) = +4*a(n-1) -6*a(n-2) +4*a(n-3) -1*a(n-4) n > 3, a(1)=1, a(2)=12, a(3)=50, a(4)=133. - Yosu Yurramendi, Sep 04 2013

E.g.f.: (-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017

From Bruce J. Nicholson, Jun 17 2020: (Start)

a(n) = A005448(n) * A005408(n-1).

a(n) = A004188(n) + A004188(n-1). (End)

MATHEMATICA

LinearRecurrence[{4, -6, 4, -1}, {1, 12, 50, 133}, 40] (* Harvey P. Dale, Jun 05 2016 *)

Table[(2*n-1)*(3*n^2 -3*n +2)/2, {n, 1, 30}] (* G. C. Greubel, Dec 01 2017 *)

PROG

(PARI) { for (n=1, 1000, write("b063491.txt", n, " ", (2*n - 1)*(3*n^2 - 3*n + 2)/2) ) } \\ Harry J. Smith, Aug 23 2009

(PARI) x='x+O('x^30); Vec(serlaplace((-2 + 4*x + 9*x^2 + 6*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017

(R)

a <- c(0, 1, 9, 38, 110)

for(n in (length(a)+1):40)

  a[n] <- +4*a[n-1]-6*a[n-2]+4*a[n-3]-a[n-4]

a [Yosu Yurramendi, Sep 04 2013]

(MAGMA) [(2*n-1)*(3*n^2 -3*n +2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017

CROSSREFS

1/12*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.

Cf. A005448, A004188.

Sequence in context: A009934 A009927 A009938 * A248230 A083559 A051797

Adjacent sequences:  A063488 A063489 A063490 * A063492 A063493 A063494

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Aug 01 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 20:36 EST 2021. Contains 340411 sequences. (Running on oeis4.)