OFFSET
1,2
COMMENTS
Interpret A176271 as an infinite square array read by antidiagonals, with rows 1,5,11,19,...; 3,9,17,27,... and so on. The sum of the terms in the n X n upper submatrix are s(n) = 1, 18, 93, 296, ... = n^2*(7*n^2-1)/6, and a(n) = s(n) - s(n-1) are the first differences. - J. M. Bergot, Jun 27 2013
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1+x)*(1+12*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (-3 + 6*x + 21*x^2 + 14*x^3)*exp(x)/3 + 1. - G. C. Greubel, Dec 01 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 11 2023
MATHEMATICA
Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n, 1, 30}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 17, 75, 203}, 30] (* G. C. Greubel, Dec 01 2017 *)
PROG
(PARI) a(n) = { (2*n - 1)*(7*n^2 - 7*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
(PARI) my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
(Magma) [(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; // G. C. Greubel, Dec 01 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Aug 01 2001
STATUS
approved