

A231779


Number of n X 2 0..2 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to itself plus one mod 3, with upper left element zero (rock paper and scissors drawn positions).


2



1, 17, 74, 315, 1343, 5734, 24495, 104655, 447152, 1910521, 8162971, 34877432, 149018667, 636702899, 2720401314, 11623291351, 49662121961, 212188293616, 906603869753, 3873590586251, 16550452221246, 70714099135861
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS



LINKS



FORMULA

Empirical: a(n) = 6*a(n1) 8*a(n2) +2*a(n3) +3*a(n4) a(n5) for n>6.
Empirical g.f.: x*(1 + 11*x  20*x^2 + 5*x^3 + 8*x^4  2*x^5) / (1  6*x + 8*x^2  2*x^3  3*x^4 + x^5).  Colin Barker, Mar 18 2018


EXAMPLE

Some solutions for n=7:
..0..2....0..1....0..1....0..0....0..0....0..1....0..0....0..2....0..0....0..1
..0..2....0..1....0..0....0..0....1..1....0..2....0..0....2..2....1..0....0..1
..2..2....2..1....1..2....2..2....2..1....2..2....1..2....2..2....2..2....0..1
..2..0....1..1....0..2....2..2....0..0....2..0....0..2....2..2....2..2....0..1
..1..0....1..1....2..2....0..1....0..0....2..1....0..2....0..0....0..0....2..1
..0..0....0..2....2..2....2..1....1..0....0..0....1..2....1..0....0..0....2..0
..2..2....0..2....0..2....2..1....1..2....1..0....1..2....2..0....2..2....1..0


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



