login
A231777
Number T(n,k) of permutations of [n] with exactly k ascents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=floor(n/2), read by rows.
2
1, 1, 1, 1, 4, 2, 8, 14, 2, 54, 60, 6, 162, 402, 150, 6, 1536, 2712, 768, 24, 6144, 19704, 12744, 1704, 24, 75000, 183120, 94320, 10320, 120, 375000, 1473720, 1392720, 365520, 21720, 120, 5598720, 17522640, 13631040, 3011040, 152640, 720, 33592320, 156250800
OFFSET
0,5
LINKS
EXAMPLE
T(4,0) = 8: 1324, 2413, 2431, 3241, 4132, 4213, 4231, 4321.
T(4,1) = 14: 1243, 1342, 1423, 1432, 2134, 2143, 2314, 2341, 3124, 3142, 3214, 3421, 4123, 4312.
T(4,2) = 2: 1234, 3412.
T(5,2) = 6: 12345, 12534, 34125, 34512, 51234, 53412.
T(6,3) = 6: 123456, 125634, 341256, 345612, 561234, 563412.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 1, 1;
: 3 : 4, 2;
: 4 : 8, 14, 2;
: 5 : 54, 60, 6;
: 6 : 162, 402, 150, 6;
: 7 : 1536, 2712, 768, 24;
: 8 : 6144, 19704, 12744, 1704, 24;
: 9 : 75000, 183120, 94320, 10320, 120;
: 10 : 375000, 1473720, 1392720, 365520, 21720, 120;
CROSSREFS
Column k=0 gives: A231601.
Row sums and T(2n,n) give: A000142.
T(n,floor(n/2)) gives: A081123(n+1).
Cf. A004526.
Sequence in context: A064821 A002291 A225872 * A288181 A110622 A130078
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Nov 13 2013
STATUS
approved