OFFSET
1,2
COMMENTS
From Omar E. Pol, Oct 23 2019: (Start)
a(n) is also the sum of terms that are in the n-th finite row and in the n-th finite column of the square [1,n]x[1,n] of the natural number array A000027; e.g., the [1,3]x[1,3] square is
1..3..6
2..5..9
4..8..13,
so that a(1) = 1, a(2) = 2 + 3 + 5 = 10, a(3) = 4 + 6 + 8 + 9 + 13 = 40.
Hence the partial sums give A185505. (End)
LINKS
Harry J. Smith, Table of n, a(n) for n = 1..1000
Hyunsoo Cho, JiSun Huh, Hayan Nam, and Jaebum Sohn, Combinatorics on bounded free Motzkin paths and its applications, arXiv:2205.15554 [math.CO], 2022. (See p. 14).
T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: x*(1+x)*(1+5*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
a(n) = Sum_{k = n^2-2*n+2..n^2} A064788(k). - Lior Manor, Jan 13 2013
From G. C. Greubel, Dec 01 2017: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (-6 + 12*x + 21*x^2 + 14*x^3)*exp(x)/6 + 1. (End)
MATHEMATICA
Table[(2*n-1)*(7*n^2-7*n+6)/6, {n, 1, 50}] (* or *) LinearRecurrenc[{4, -6, 4, -1}, {1, 10, 40, 105}, 50] (* G. C. Greubel, Dec 01 2017 *)
PROG
(PARI) a(n) = { (2*n - 1)*(7*n^2 - 7*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
(PARI) my(x='x+O('x^30)); Vec(serlaplace((-6 + 12*x + 21*x^2 + 14*x^3 )*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
(Magma) [(2*n-1)*(7*n^2-7*n+6)/6: n in [1..30]]; // G. C. Greubel, Dec 01 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
N. J. A. Sloane, Aug 01 2001
STATUS
approved