

A161438


Number of reduced words of length n in the Weyl group A_6.


1



1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Computed with MAGMA using commands similar to those used to compute A161409.


REFERENCES

J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)


LINKS



FORMULA

G.f. for A_m is the polynomial Prod_{k=1..m}(1x^(k+1))/(1x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



