login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353939
Smallest b > 1 such that b^(p-1) == 1 (mod p^6) for p = prime(n).
8
65, 728, 1068, 34967, 284995, 861642, 390112, 333257, 2818778, 42137700, 8078311, 33518159, 92331463, 21583010, 138173066, 8202731, 390421192, 1006953931, 77622331, 270657300, 5915704483, 522911165, 2507851273, 1329885769, 2789067613, 3987072867, 7938255646
OFFSET
1,1
MATHEMATICA
a[n_] := Module[{p = Prime[n], b = 2}, While[PowerMod[b, p - 1, p^6] != 1, b++]; b]; Array[a, 9] (* Amiram Eldar, May 12 2022 *)
PROG
(PARI) a(n) = my(p=prime(n)); for(b=2, oo, if(Mod(b, p^6)^(p-1)==1, return(b)))
(Python)
from sympy import prime
from sympy.ntheory.residue_ntheory import nthroot_mod
def A353939(n): return 2**6+1 if n == 1 else int(nthroot_mod(1, (p:= prime(n))-1, p**6, True)[1]) # Chai Wah Wu, May 17 2022
CROSSREFS
Row k = 6 of A257833.
Cf. similar sequences for p^k: A039678 (k=2), A249275 (k=3), A353937 (k=4), A353938 (k=5), A353940 (k=7), A353941 (k=8), A353942 (k=9), A353943 (k=10).
Sequence in context: A220229 A200890 A268265 * A351269 A088677 A321562
KEYWORD
nonn
AUTHOR
Felix Fröhlich, May 12 2022
EXTENSIONS
a(25)-a(27) from Jinyuan Wang, May 17 2022
STATUS
approved