login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A017677
Numerator of sum of -7th powers of divisors of n.
3
1, 129, 2188, 16513, 78126, 23521, 823544, 2113665, 4785157, 5039127, 19487172, 9032611, 62748518, 13279647, 56979896, 270549121, 410338674, 205761751, 893871740, 645047319, 1801914272, 628461297, 3404825448, 385391585, 6103593751, 4047279411, 10465138360, 34691791
OFFSET
1,2
COMMENTS
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
LINKS
FORMULA
Numerators of coefficients in expansion of Sum_{k>=1} x^k/(k^7*(1 - x^k)). - Ilya Gutkovskiy, May 25 2018
From Amiram Eldar, Apr 02 2024: (Start)
sup_{n>=1} a(n)/A017678(n) = zeta(7) (A013665).
Dirichlet g.f. of a(n)/A017678(n): zeta(s)*zeta(s+7).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A017678(k) = zeta(8) (A013666). (End)
EXAMPLE
1, 129/128, 2188/2187, 16513/16384, 78126/78125, 23521/23328, 823544/823543, 2113665/2097152, ...
MATHEMATICA
Table[Numerator[Total[Divisors[n]^-7]], {n, 30}] (* Harvey P. Dale, Nov 29 2014 *)
Table[Numerator[DivisorSigma[7, n]/n^7], {n, 1, 20}] (* G. C. Greubel, Nov 07 2018 *)
PROG
(PARI) vector(20, n, numerator(sigma(n, 7)/n^7)) \\ G. C. Greubel, Nov 07 2018
(Magma) [Numerator(DivisorSigma(7, n)/n^7): n in [1..20]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
Cf. A017678 (denominator), A013665, A013666.
Sequence in context: A321563 A034681 A351302 * A013955 A294302 A343509
KEYWORD
nonn,frac
STATUS
approved